Pathways to B.Sc. Biology: Challenges and potential solutions

Jennifer Foote
Chair, Department of Biology

Outline

- Algoma's Biology program
 - Program map and learning outcomes
- Challenges to pathway creation
 - Introductory material coverage
 - Insufficient course overlap
- Solutions
 - Combining courses to create equivalencies
 - Cross-year transfer credits (a hybrid approach)
 - Examples
- Discussion/Questions

- Program level learning outcomes:
 - 1. Key concepts and theories in biology
 - Explore the current state of knowledge and investigate innovative solutions using an integrative approach
 - 3. Apply knowledge of the theory, principles, and concepts in an integrative manner
 - 4. Understand/analyze complex issues by applying scientific data trans-disciplinarily

- Program level learning outcomes:
 - 5. Generate novel research questions/hypotheses, collect/analyze data, and formulate/defend conclusions with rigorous scientific methodology
 - 6. Think critically with respect to science and technology-based decision making
 - 7. Communicate scientific information effectively
 - 8. Participate in collegial peer review processes

- Program level learning outcomes:
 - 9. Contribute as effective team members in multidisciplinary research teams
 - 10. Apply practical laboratory and field sampling skills
 - 11. Apply numerical skills to the analysis of data
 - 12. Work collaboratively to critically evaluate, and investigate possible solutions to biological challenges relevant to the Algoma region

- Year 1:
 - 1. Biology I and II
 - 2. Chemistry I and II
 - Physics I and II <u>OR</u> Geology I and II
 - 4. Calculus I and Calculus II OR Linear Algebra
 - 5. Two Humanities/Social Sciences electives

Year 2:

- 1. Statistics
- 2. Cell Biology
- 3. Microbiology
- 4. Principles of Scientific Inquiry
- 5. Two of three Form and Function
 - Plants, Invertebrates, Vertebrates
- 6. Organic Chemistry
- 7. One 2nd year Biology credit
- 8. Two Humanities/Social Sciences electives

Year 3:

- 1. Research Methods and Analysis
- 2. Genetics
- 3. Evolution
- 4. Population Ecology and Community Ecology
- 5. Biochemistry
- 6. Two 3rd year Biology electives
- 7. Two free electives

- Year 4:
 - 1. Honours thesis (two course equivelant)
 - 2. Six 3rd or 4th year Biology electives (at least 3 at the 4th year)
 - 3. Two free electives

- Program level learning outcomes:
 - 1. Key concepts and theories in biology
 - Explore the current state of knowledge and investigate innovative solutions using an integrative approach
 - 3. Apply knowledge of the theory, principles, and concepts in an integrative manner
 - 4. Understand/analyze complex issues by applying scientific data trans-disciplinarily

- Program level learning outcomes:
 - 5. Generate novel research questions/hypotheses, collect/analyze data, and formulate/defend conclusions with rigorous scientific methodology
 - 6. Think critically with respect to science and technology-based decision making
 - 7. Communicate scientific information effectively
 - 8. Participate in collegial peer review processes

- Program level learning outcomes:
 - 9. Contribute as effective team members in multidisciplinary research teams
 - 10. Apply practical laboratory and field sampling skills
 - 11. Apply numerical skills to the analysis of data
 - 12. Work collaboratively to critically evaluate, and investigate possible solutions to biological challenges relevant to the Algoma region

Transfer Pathway Challenges – Breadth of Coverage Challenge

Year 1:

- 1. Biology I and II
- 2. Chemistry I and II
- Physics I and II OR Geology I and II
- 4. Calculus I and II OR Linear Algebra
- 5. Two Humanities/Social Sciences electives

Year 2:

- 1. Statistics
- 2. Cell Biology
- 3. Microbiology
- 4. Principles of Scientific Inquiry
- 5. Two of three Form and Function
- 6. Organic Chemistry
- 7. One 2nd year Biology credit
- 8. Two Humanities/Social Sciences electives

Transfer Pathway Challenges: Building on Principles

Year 1:

1. Biology I and II

Year 2-4:

- 1. Cell Biology
- 2. Microbiology
- 3. 2 of 3 Form and Function
- 4. Genetics
- 5. Evolution
- 6. Population Ecology
- 7. Community Ecology
- 8. Many 2nd-4th year electives

Transfer Pathway Challenges: Building on Principles

Year 1:

- 1. Chemistry I and II
- 2. Calculus I

Year 2-3:

- 1. Organic Chemistry
- 2. Biochemistry

Challenges to Pathway Creation

- No directly equivalent courses
- No obvious first year equivalents or coverage of material across courses

Variation in credit hours

Program learning outcomes incomplete

Sault College Programs

- A number of programs with biological content
 - Fish and Wildlife Technician
 - Natural Environment Technician or Technologist
 - Adventure Recreation and Parks
 - Forest Conservation
 - Fitness and Health Promotion
 - Practical Nursing
 - OT/PT Assistant

Typical Pathway

- Students registering for 4-year degrees (40 courses) are eligible for up to:
 - 15 courses for 2 year programs
 - 20 courses for 3 year programs
- Often only the electives can be filled by these transfer credits as it stands
 - For Biology, this means only the eight elective courses are filled by transfer credits
 - Credit may be given for program electives but on case by case basis and there is a need for consistency

Proposed Solutions

- Rather than single course-course transfer use pairs of courses
 - Related in content
 - With sufficient biological content
 - Assign to program-level electives based on:
 - Year-level in program
 - Number of combined courses
 - Content related to Biology electives in our program

2nd Year Biology Elective

Silviculture I Silviculture II Forest Plant Biology

3rd Year Biology Electives

- 1. Natural Resource Entrepreneurship Sustainable Res Management
- Fire Management
 Wildlife Management
 Forest Management Planning
- 3. Ecology Ecosystem Classification

4th Year Biology Elective

- Fall Field Camp First Year
- Fall Parks and Rec Camp 2nd Year
- Trees and Shrubs Identification
- Trees and Herbaceous Plant Identification
- Soils Analysis
- Forest Inventory

*anti-requisite Field Studies in Biology (4th year elective)

- Credits not allocated toward specific Biology program courses
 - Identified as either free electives or Humanities and Social Sciences electives depending on discipline
 - Eight elective courses transferred

- Year 1:
 - 1. Biology I and II
 - 2. Chemistry I and II
 - Physics I and II OR Geology I and II
 - 4. Calculus I and II OR Linear Algebra
 - 5. Two Humanities/Social Sciences electives

- Year 2:
 - 1. Statistics
 - 2. Cell Biology
 - 3. Microbiology
 - 4. Principles of Scientific Inquiry
 - 5. Two of three Form and Function
 - Plants, Invertebrates, Vertebrates
 - 6. Organic Chemistry
 - 7. One 2nd year Biology credit
 - 8. Two Humanities/Social Sciences electives

- Year 3:
 - 1. Research Methods and Analysis
 - 2. Genetics
 - 3. Evolution
 - 4. Population Ecology and Community Ecology
 - 5. Biochemistry
 - 6. Two 3rd year Biology electives
 - 7. Two free electives

- Year 4:
 - 1. Honours thesis (full year course)
 - 2. Six 3rd or 4th Year Biology electives (at least 3 at 4th year level) 2 of 6
 - 3. Two free electives

- Transfer pathway:
 - 8 courses of free elective (all that are required for the B.Sc. in Biology at Algoma)
 - One 2nd year Biology elective
 - Three 3rd year Biology electives
 - One 4th year Biology elective

13 of the required 40 courses; the remaining 27 courses could be obtained in 3 years of study at Algoma (under 10 courses per year).

Example 2 – Dental Hygiene (Cambrian College) – Year 2

Introduction to Statistics

- Introduction to Statistics and Research Methods
- Evidence-based Practice
- Research and Writing/Health Sciences

2nd Year Biology Elective

- Dental Radiography
- Pharmacology in Dental Hygiene

Microbiology

- Microbiology/Immunology
- Periodontics

Example 2 – Dental Hygiene (Cambrian College) – Year 3

Human Form and Function I

- Anatomy and Physiology
- Orofacial Anatomy

Human Form and Function II

- Anatomy and Physiology II
- Human Pathophysiology

Example 2 – Dental Hygiene (Cambrian College) – Year 4

BIOL 3rd Year Elective

- Promoting Health in Multicultural Populations
- Health Promotion and Community
- Community Health

BIOL 3rd Year Elective

- Oral Histology
- Oral Pathology

BIOL 3rd Year Elective

- Oral Health Promotion
- Nutrition in Health Promotion
- Health Policy and Advocacy

BIOL 4th Year Elective

Dental Hygiene Theory I - V

Example: Dental Hygiene

- Transfer pathway:
 - Eight free elective courses (all that are required for the B.Sc. in Biology at Algoma)
 - Core courses: Microbiology, Statistics
 - One 2nd year Biology elective
 - Five 3rd year Biology electives
 - One 4th year Biology elective
- 17 of the required 40 courses transferred; the remaining 23 courses could be obtained in 2.5 years of study at Algoma

- Year 1:
 - 1. Biology I and II
 - 2. Chemistry I and II
 - Physics I and II OR Geology I and II
 - 4. Calculus I and II OR Linear Algebra
 - 5. Two Humanities/Social Sciences electives

- Year 2:
 - 1. Statistics
 - 2. Cell Biology
 - 3. Microbiology
 - 4. Principles of Scientific Inquiry
 - 5. Two of three Form and Function
 - 6. Organic Chemistry
 - 7. One 2nd year Biology elective
 - 8. Two Humanities/Social Sciences electives

- Year 3:
 - 1. Research Methods and Analysis
 - 2. Genetics
 - 3. Evolution
 - 4. Population Ecology and Community Ecology
 - 5. Biochemistry
 - 6. Two 3rd year Biology electives
 - 7. Two free electives

- Year 4:
 - 1. Honours thesis (full year course)
 - 2. Six 3rd or 4th year Biology courses (at least 3 at 4th year level) 4 of 6 (3x 3rd and 1x4th)
 - 3. Two free electives

Preserving Program Outcomes

- Core courses only given as credit when sufficient coverage in program
 - All students exposed to breadth of material
- Cross-year credit transfer allows students to build toward program learning outcomes
 - Students take some courses in each of years 1-4
 - Introductory courses ensure foundational knowledge covered

Next Steps

Ideas for Discussion

- How do others build Science pathways?
 - Bridging courses?
 - Full-year transfers (e.g. 2+2)
- How do different pathway types influence student success?
 - Will hybrid pathways differ?
- Is taking a program by program approach time effective?
- How will cross-year transfer credits affect course scheduling for programs?

